DLB
/ ImageNet
README
Training
Dataset
Predictions
Logging
Models
Compute
Recall
Comparisons
Model
ResNet
EfficientNet
Vision Transformer
Visualization
Graph
Summary
ResNet
%3
/outputs/324
MaxPool3x3
17929724348118987071
Conv1x1 > BatchNorm
/outputs/324->17929724348118987071
17840074077853294423
Conv1x1 > BatchNorm > Relu
x2
/outputs/324->17840074077853294423
/outputs/335
Add
/outputs/336
Relu
/outputs/335->/outputs/336
/outputs/345
Add
/outputs/336->/outputs/345
12539135473429587073
Conv1x1 > BatchNorm > Relu
x2
/outputs/336->12539135473429587073
/outputs/346
Relu
/outputs/345->/outputs/346
/outputs/355
Add
/outputs/346->/outputs/355
12755714773505542116
Conv1x1 > BatchNorm > Relu
x2
/outputs/346->12755714773505542116
/outputs/356
Relu
/outputs/355->/outputs/356
433058829606915380
Conv1x1 > BatchNorm
/outputs/356->433058829606915380
9671234219610773385
Conv1x1 > BatchNorm > Relu
x2
/outputs/356->9671234219610773385
/outputs/367
Add
/outputs/368
Relu
/outputs/367->/outputs/368
/outputs/377
Add
/outputs/368->/outputs/377
7709742550004430916
Conv1x1 > BatchNorm > Relu
x2
/outputs/368->7709742550004430916
/outputs/378
Relu
/outputs/377->/outputs/378
/outputs/387
Add
/outputs/378->/outputs/387
1620492448859816813
Conv1x1 > BatchNorm > Relu
x2
/outputs/378->1620492448859816813
/outputs/388
Relu
/outputs/387->/outputs/388
/outputs/397
Add
/outputs/388->/outputs/397
515608367734221756
Conv1x1 > BatchNorm > Relu
x2
/outputs/388->515608367734221756
/outputs/398
Relu
/outputs/397->/outputs/398
4662198263690716146
Conv1x1 > BatchNorm
/outputs/398->4662198263690716146
386101648313736977
Conv1x1 > BatchNorm > Relu
x2
/outputs/398->386101648313736977
/outputs/409
Add
/outputs/410
Relu
/outputs/409->/outputs/410
/outputs/419
Add
/outputs/410->/outputs/419
5552748083489203022
Conv1x1 > BatchNorm > Relu
x2
/outputs/410->5552748083489203022
/outputs/420
Relu
/outputs/419->/outputs/420
/outputs/429
Add
/outputs/420->/outputs/429
2101658768658006462
Conv1x1 > BatchNorm > Relu
x2
/outputs/420->2101658768658006462
/outputs/430
Relu
/outputs/429->/outputs/430
/outputs/439
Add
/outputs/430->/outputs/439
4339128499005424090
Conv1x1 > BatchNorm > Relu
x2
/outputs/430->4339128499005424090
/outputs/440
Relu
/outputs/439->/outputs/440
/outputs/449
Add
/outputs/440->/outputs/449
4715250158269881394
Conv1x1 > BatchNorm > Relu
x2
/outputs/440->4715250158269881394
/outputs/450
Relu
/outputs/449->/outputs/450
/outputs/459
Add
/outputs/450->/outputs/459
1797343285977896263
Conv1x1 > BatchNorm > Relu
x2
/outputs/450->1797343285977896263
/outputs/460
Relu
/outputs/459->/outputs/460
11132217498716053789
Conv1x1 > BatchNorm
/outputs/460->11132217498716053789
13814369757227547666
Conv1x1 > BatchNorm > Relu
x2
/outputs/460->13814369757227547666
/outputs/471
Add
/outputs/472
Relu
/outputs/471->/outputs/472
/outputs/481
Add
/outputs/472->/outputs/481
1656770075138869236
Conv1x1 > BatchNorm > Relu
x2
/outputs/472->1656770075138869236
/outputs/482
Relu
/outputs/481->/outputs/482
/outputs/491
Add
/outputs/482->/outputs/491
18064948400250178962
Conv1x1 > BatchNorm > Relu
x2
/outputs/482->18064948400250178962
/outputs/492
Relu
/outputs/491->/outputs/492
/outputs/493
GlobalAveragePool
/outputs/492->/outputs/493
/outputs/494
Flatten
/outputs/493->/outputs/494
/outputs/495
Linear
/outputs/494->/outputs/495
13393875850837252928
Conv7x7 > BatchNorm > Relu
13393875850837252928->/outputs/324
14215705299565413843
Conv1x1 > BatchNorm
14215705299565413843->/outputs/335
17929724348118987071->/outputs/335
13615124776926306894
Conv1x1 > BatchNorm
13615124776926306894->/outputs/345
7937139278019172509
Conv1x1 > BatchNorm
7937139278019172509->/outputs/355
11930899453875706513
Conv1x1 > BatchNorm
11930899453875706513->/outputs/367
433058829606915380->/outputs/367
4756677724965635468
Conv1x1 > BatchNorm
4756677724965635468->/outputs/377
179701791191910970
Conv1x1 > BatchNorm
179701791191910970->/outputs/387
8481209755427376539
Conv1x1 > BatchNorm
8481209755427376539->/outputs/397
3376931862563477704
Conv1x1 > BatchNorm
3376931862563477704->/outputs/409
4662198263690716146->/outputs/409
4356735720558805822
Conv1x1 > BatchNorm
4356735720558805822->/outputs/419
9906282645819804956
Conv1x1 > BatchNorm
9906282645819804956->/outputs/429
521461926568742573
Conv1x1 > BatchNorm
521461926568742573->/outputs/439
13876741653936092581
Conv1x1 > BatchNorm
13876741653936092581->/outputs/449
2921446340609644257
Conv1x1 > BatchNorm
2921446340609644257->/outputs/459
9312876473863282108
Conv1x1 > BatchNorm
9312876473863282108->/outputs/471
11132217498716053789->/outputs/471
11387459869905413907
Conv1x1 > BatchNorm
11387459869905413907->/outputs/481
10088626667619544161
Conv1x1 > BatchNorm
10088626667619544161->/outputs/491
17840074077853294423->14215705299565413843
12539135473429587073->13615124776926306894
12755714773505542116->7937139278019172509
9671234219610773385->11930899453875706513
7709742550004430916->4756677724965635468
1620492448859816813->179701791191910970
515608367734221756->8481209755427376539
386101648313736977->3376931862563477704
5552748083489203022->4356735720558805822
2101658768658006462->9906282645819804956
4339128499005424090->521461926568742573
4715250158269881394->13876741653936092581
1797343285977896263->2921446340609644257
13814369757227547666->9312876473863282108
1656770075138869236->11387459869905413907
18064948400250178962->10088626667619544161
Right sidebar!